
Learning Guidance Rewards with Trajectory-space
Smoothing

Tanmay Gangwani
Dept. of Computer Science

UIUC
gangwan2@illinois.edu

Yuan Zhou
Dept. of ISE

UIUC
yuanz@illinois.edu

Jian Peng
Dept. of Computer Science

UIUC
jianpeng@illinois.edu

Abstract

Long-term temporal credit assignment is an important challenge in deep rein-
forcement learning (RL). It refers to the ability of the agent to attribute actions to
consequences that may occur after a long time interval. Existing policy-gradient
and Q-learning algorithms typically rely on dense environmental rewards that
provide rich short-term supervision and help with credit assignment. However,
they struggle to solve tasks with delays between an action and the corresponding
rewarding feedback. To make credit assignment easier, recent works have proposed
algorithms to learn dense guidance rewards that could be used in place of the sparse
or delayed environmental rewards. This paper is in the same vein – starting with a
surrogate RL objective that involves smoothing in the trajectory-space, we arrive
at a new algorithm for learning guidance rewards. We show that the guidance
rewards have an intuitive interpretation, and can be obtained without training any
additional neural networks. Due to the ease of integration, we use the guidance
rewards in a few popular algorithms (Q-learning, Actor-Critic, Distributional-RL)
and present results in single-agent and multi-agent tasks that elucidate the benefit
of our approach when the environmental rewards are sparse or delayed 1.

1 Introduction

Deep Reinforcement Learning (RL) agents are tasked with maximization of long-term environmental
rewards. Prevalent algorithms for deep RL typically need to estimate the expected future rewards after
taking an action in a particular state – Actor-critic and Q-learning involve computing the Q-value,
while policy-gradient methods tend to be more stable when using the advantage function. The value
estimation is performed using temporal difference (TD) or Monte-Carlo (MC) learning. Although
deep RL algorithms can achieve remarkable results on a wide variety of tasks, their performance
crucially depends on the meticulously designed reward function, which provides a dense per-timestep
learning signal and facilitates value estimation. In real-world sequential decision-making problems,
however, the rewards are often sparse or delayed. Examples include, to name a few, industrial process
control [9], molecular design [17], and resource allocation [19]. Delayed rewards introduce high
bias in TD-learning and high variance in MC-learning [1], leading to poor value estimates. This
impedes long-term temporal credit assignment [15, 32], which refers to the ability of the agent to
attribute actions to consequences that may occur after a long time interval. As a motivating example
in a simulated domain, Figure 1 shows the performance with Soft-Actor-Critic (SAC) [7], a popular
off-policy RL method, on two MuJoCo locomotion tasks from the Gym suite. For delay=k, the agent
receives no reward for (k − 1) timesteps and is then provided the accumulated rewards at the kth

timestep. Increasing the delay leads to progressively worse performance.

Another class of policy search algorithms, which are particularly handy when rewards are delayed,
1Code for this paper is available at https://github.com/tgangwani/GuidanceRewards

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Figure 1: Effect of delayed rewards

is black-box stochastic-optimization; examples include Evolu-
tion Strategies [22] and Deep-Neuroevolution [30]. They are
invariant to delayed rewards since the trajectories are not decom-
posed into individual timesteps for learning; rather zeroth-order
finite-difference or gradient-free methods are used to learn poli-
cies based only on the trajectory returns (or aggregated rewards).
However, one downside is that discarding the temporal struc-
ture of the RL problem leads to inferior sample-efficiency when
compared with the standard RL algorithms. Our goal in this
paper is to design an approach that easily integrates into the
existing RL algorithms, thus enjoying the sample-efficiency benefits, while being invariant to delayed
rewards. To achieve this, we introduce a surrogate RL objective that involves smoothing in the
trajectory-space and arrive at a new algorithm for learning guidance rewards. The guidance rewards
are curated using only the trajectory returns and are easily inferred for each state-action tuple. The
dense supervision from the guidance rewards makes value estimation and credit assignment easier,
substantially accelerating learning when the original environmental rewards are sparse or delayed.

We provide an intuitive understanding for the guidance rewards in terms of uniform credit assignment
– they characterize a uniform redistribution of the trajectory return to each constituent state-action pair.
A favorable property of our approach is that no additional neural networks need to be trained to obtain
the guidance rewards, unlike recent works that also examine RL with delayed rewards (c.f. Section 5).
For quantitative evaluation, we combine the guidance rewards with a variety of RL algorithms and
environments. These include single-agent tasks: Q-learning [33] in a discrete grid-world and SAC on
continuous control locomotion tasks; and multi-agent tasks: TD3 [4] and Distributional-RL [2] in
multi-particle cooperative environments.

2 Background and Notations

Our RL environment is modeled as an infinite-horizon, discrete-time Markov Decision Process
(MDP). The MDP is characterized by the tuple (S, A, r, p, γ), where S and A are the state- and
action-space, respectively, and γ ∈ [0, 1) is the discount factor. Given an action at, the next state is
sampled from the transition dynamics distribution, st+1 ∼ p(st+1|st, at), and the agent receives a
reward r(st, at) determined by the reward function r : S × A → R. A stochastic policy π(at|st)
defines the state-conditioned distribution over actions. τ denotes a trajectory {s0, a0, s1, a1, . . . }
and R(τ) is the sum of discounted rewards over the trajectory, R(τ) =

∑∞
t=0 γ

tr(st, at). The RL
objective is to learn π that maximizes the expected R(τ), η(π) = Ep,π[R(τ)].

Actor-critic Algorithms. These methods use a critic for value function estimation and an actor that
is updated based on the information provided by the critic. The critic is trained with TD-learning in a
policy-evaluation step; then the actor is updated with an approximate gradient in the direction of policy
improvement. Under certain conditions, their repeated application converges to an optimal policy [31].
We briefly outline two model-free off-policy actor-critic RL algorithms that work extremely well on
high-dimensional tasks and are used in this paper – TD3 and SAC. TD3 is a deterministic policy
gradient algorithm (DPG) [25]. It uses a deterministic policy µθ that is updated with the policy
gradient: ∇θEs∼ρβ [Qµ(s, µθ(s))], where ρβ is the state distribution of a behavioral policy β, and Qµ
is the state-action value trained with the Bellman error. TD3 alleviates the Q-function overestimation
bias in DPG by using Clipped Double Q-learning when calculating the Bellman target. Differently,
SAC optimizes for the maximum entropy RL objective, Eπ[

∑
t γ

t(r(st, at) + αH(π(·|st)))], where
H and α are the policy entropy and the temperature, respectively. SAC alternates between soft policy
evaluation, which estimates the soft Q-function using a modified Bellman operator, and soft policy
improvement, which updates the actor by minimizing the Kullback-Leibler divergence between the
policy distribution and exponential form of the soft Q-function. The loss functions for the critic (Qφ),
the actor (πθ) and the temperature (α) are:

JQ(φ; r) = E(s,a,s′)∼D
a′∼πθ(·|s′)

[1
2

(
Qφ(s, a)− (r(s, a) + γ(Qφ̄(s′, a′)− α log πθ(a

′|s′)))
)2]

(1)

Jπ(θ) = E s∼D
a∼πθ(·|s)

[
α log(πθ(a|s))−Qφ(s, a)

]
; J(α) = E s∼D

a∼πθ(·|s)

[
−α log πθ(a|s)−αH̄

]
(2)

where D is the replay buffer, Qφ̄ is the target critic network, and H̄ is the expected target entropy.

2

3 Method

This section begins with the definition of our modified RL objective that involves smoothing in the
trajectory-space, following which we make design choices that result in guidance rewards. Given
a policy πθ, the standard RL objective is: arg maxθ Eτ∼π(θ)[R(τ)]. As motivated before, with
delayed environmental rewards, directly optimizing this objective hinders learning due to difficulty
in temporal credit assignment caused by value estimation errors. Objective function smoothing has
long been studied in the stochastic optimization literature. In the context of RL, Salimans et al. [22]
proposed Evolution Strategies (ES) for policy search. ES creates a smoothed version of the standard
RL objective using parameter-level smoothing (usually Gaussian blurring):

ηES(πθ) = Eε∼N (0,I)Eτ∼π(θ+σ·ε)[R(τ)]

where σ controls the level of smoothing. Although ES is invariant to delayed rewards, eschewing the
temporal structure of the RL problem often results in low sample efficiency. Following the broad
principle of using a smoothed objective to obtain effective gradient signals, we consider explicit
smoothing in the trajectory-space, rather than the parameter-space. We define our maximization
objective as:

ηsmooth(πθ) = Eτ̂∼π(θ)

[
Eτ∼Mτ̂

[R(τ)]
]

(3)
where Mτ̂ (τ) is the smoothing distribution over trajectories τ that is parameterized by the reference
trajectory τ̂ . When M is a delta distribution, i.e., Mτ̂ (τ) = δ(τ = τ̂), the original RL objective
is recovered. We wish to design a smoothing distribution M that helps with credit assignment.
Let β(a|s) denote a behavioral policy and the trajectory distribution induced by β in the MDP be
pβ(τ) = p(s0)

∏∞
t=0 p(st+1|st, at)β(at|st). Further, we introduce pβ(τ ; s, a) as the distribution

over the β-induced trajectories which include the state-action pair (s, a):

pβ(τ ; s, a)
def
=

pβ(τ)1[(s, a) ∈ τ]∫
τ
pβ(τ)1[(s, a) ∈ τ] dτ

where 1 is the indicator function. For consistency, we require that the normalization constant be
positive ∀(s, a). Let {ŝt, ât} be the reference state-action pairs in the reference trajectory τ̂ . We
propose the following infinite mixture model for the smoothing distribution Mτ̂ (τ):

Mτ̂ ,β(τ) = (1− γ)

∞∑
t=0

γtpβ(τ ; ŝt, ât)

Given a reference trajectory τ̂ , this distribution samples trajectories from the behavioral policy β
that intersect or overlap with the reference trajectory, with intersections at later timesteps discounted
exponentially with the factor γ. Inserting this in Equation 3, rearranging and ignoring constants, the
smoothed objective to maximize becomes:

ηsmooth(πθ) = Eτ̂∼π(θ)

[∞∑
t=0

γt
∫
τ

pβ(τ ; ŝt, ât)R(τ) dτ︸ ︷︷ ︸
rg(ŝt,ât)

]
(4)

This is equivalent to the standard RL objective, albeit with a different reward function than the envi-
ronmental reward. We define this as the guidance reward function, rg(s, a;β) = Eτ∼pβ(τ ;s,a)[R(τ)].
The guidance reward apportioned to each state-action pair is the expected value (under pβ) of the
returns of the trajectories which include that state-action pair. Useful features of rg are that it provides
a dense reward signal, and is invariant to delays in the environmental rewards since it depends on the
trajectory return. Thus, it potentially promotes better value estimation and credit assignment.

Interpretation as uniform credit assignment. Temporal Credit assignment deals with the question:
"given a final outcome (e.g. trajectory returns), how relevant was each state-action pair in that
trajectory towards achieving the return?". Prior work has proposed learning estimators that explicitly
model the relevance of an action to future returns, or using contribution analysis methods to redis-
tribute rewards to the individual timesteps (c.f. Section 5). Our method could be viewed as performing
a simple redistribution – it uniformly distributes the trajectory return among the state-action pairs in
that trajectory. 2 This non-committal or maximum entropy credit assignment is natural to consider in

2In Equation 4, we excluded the constant (1− γ) from the smoothing distribution Mτ̂ (τ) to reduce clutter.
Since 1/(1− γ) is the effective horizon, (1− γ)R(τ) represents a uniform redistribution of the trajectory return
to each constituent state-action pair.

3

(a) Quiver plots during training
(b) Performance with
guidance rewards

Figure 2: We consider a 50× 50 grid-world with the start and goal locations marked in the image. The rewards
are episodic – a non-zero reward is only provided at the end of the episode (horizon=150 steps) and is equal to
the negative of the distance of the final position to the goal. We run for 15k episodes. The three quiver plots (left
to right) are taken after 100 episodes, 2k episodes and 15k episodes, respectively. In each quiver plot, an arrow
in a state represents the guidance reward: the direction denotes the action with maximum guidance reward, i.e.,
arg maxa rg(s, a), and the length denotes its magnitude in [0, 1]. A state with no arrow mean that the guidance
reward is 0 for all actions in that state. For ease of exposition, we have colored all arrows pointing up/right with
red and all arrows pointing down/left with blue. We note that over time, reasonable guidance rewards emerge
along the diagonal path from the start location to the goal. Although the guidance rewards in the top-left and
bottom-right regions of the grid are imprecise, they are not critical for learning the optimal policy to achieve the
task. Figure (right) compares tabular Q-learning with environmental rewards and our guidance rewards. Quiver
plots best viewed when digitally zoomed.

the absence of any prior structure or information. The guidance reward for each state-action pair is
then obtained as the expected value (under pβ) of the uniform credit it receives from the different
trajectory returns. For clarity of exposition, Appendix A.3 demonstrates the guidance rewards using
some elementary MDPs and pβ .

3.1 Integrating guidance rewards into existing RL algorithms

Without access to the true MDP reward function, it is infeasible to solve for the guidance rewards
exactly. Hence, we resort to a Monte-Carlo (MC) estimation for the expectation, rg(s, a;β) =
Eτ∼pβ(τ ;s,a)[R(τ)]. Let Γ denote a fixed set of trajectories generated in the MDP using β. The MC
estimate can be written as: rg(s, a) = (1/N(s, a))

∑
τ∈Γ

[
R(τ)1[(s, a) ∈ τ]

]
, where N(s, a) is the

number of trajectories in Γ which include the tuple (s, a). Please see Appendix A.1 for details on
achieving the MC estimate from the smoothed RL objective (Equation 4). It is possible to deploy
an exploratory behavioral policy β to obtain the set Γ in a pre-training phase. Following that, the
stationary guidance rewards computed from Γ could be used to learn a new policy with any of the
standard RL methods. One issue with this sequential approach is that it is challenging to design
β such that it achieves adequate state-action-space coverage in high dimensions. Perhaps more
importantly, it is typically unnecessary to have good estimates for the guidance rewards for the entire
state-action-space. For instance, in a grid-world, if the goal location is always to the right of the
starting position of the agent, it is acceptable to have imprecise guidance reward in the left half of the
grid, as long as the agent is discouraged from venturing to the left. Therefore, we propose an iterative
approach where the experience gathered thus far by the agent is used to build the guidance rewards,
i.e., rg(s, a) is the expected value of the uniform credit received by (s, a) from the trajectories
already rolled out in the MDP. Simultaneously, a policy π (or Q-function) is learned using these
non-stationary rewards. With this procedure, β could be thought of as being implicitly defined as a
mixture of current and past policies π. The scale of the credit apportioned to a state-action pair from
a trajectory depends on the scale of its return value. For the guidance rewards to be effective, it is
sufficient that the relative values of the rewards be properly aligned to solve the task. Therefore, when
assigning credits, we normalize the trajectory returns to [0, 1] using min-max normalization. We refer
to our approach for producing guidance rewards as Iterative Relative Credit Refinement (IRCR).
The guidance rewards are adapted over time as the average credit assigned to each state-action pair is
refined by the information (return value) from newly sampled trajectories.

4

Algorithm 1: Tabular Q-learning with IRCR
1 Initialize Q(s,a)← 0
2 Rmax ← −∞; Rmin ←∞ . Maximum/Minimum return thus far
3 B(s, a)← ∅ ∀ (s, a) . Buffer that stores for each (s, a), a list of returns of trajectories that include

that (s, a)

4 Function GetGuidanceReward(s, a):
/* Get normalized returns; return 0 if B(s, a) = ∅ */

5 return ERi∼B(s,a)[
Ri−Rmin
Rmax−Rmin

]

6 for each episode do
7 Re ← 0 . Accumulates rewards for current episode
8 τe ← ∅ . Stores state-action pairs for current episode

9 for each step in {1, . . . , T} do
10 Choose a from s using policy derived from Q (ε-greedy)
11 Take action a and observe r, s′ . Sample transition from the environment
12 τe ← τe ∪ {(s,a)}; Re ← Re + r
13 rg(s,a)← GetGuidanceReward(s,a)
14 Q(s,a)← Q(s,a) + α [rg(s,a) + γ maxa′ Q(s′,a′) - Q(s,a)]
15 end
16 for each (s,a) in τe do
17 B(s, a)← B(s, a) ∪ {Re} . Update B for (s, a) along the collected trajectory
18 end
19 Rmax ← max(Rmax, Re); Rmin ← min(Rmin, Re) . Update Rmax, Rmin

20 end

Any standard RL algorithm could be modified by replacing the environmental rewards with the
guidance rewards. In Algorithm 1, we outline this for tabular Q-learning with small state and action
spaces. The notable change from the standard Q-learning is the use of rg in Line 14, instead of the
environmental reward. To compute rg, we maintain a buffer B(s, a) for each state-action pair that
stores the returns of the past trajectories which include that state-action pair (Line 17). The guidance
rewards evolve over time since the average credit allotted to a state-action pair changes as more
experience is gathered in the MDP. To illustrate this, we run Algorithm 1 in a 50× 50 grid-world with
episodic environmental rewards. Figure 2a provides some insights on the structure of the guidance
rewards assigned to the different regions of the grid as training progresses; the description of the
episodic rewards and the arrows in the quiver plots is provided in the figure caption. In Figure 2b, we
show the performance gains compared with tabular Q-learning using environmental rewards. Please
see Appendix A.2 for hyperparameters and other details.

Scaling to high-dimensional continuous spaces. Actor-critic algorithms that scale to more complex
environments (e.g. TD3, SAC) maintain an experience replay buffer [12] that stores {s, a, s′, r}
tuples. These algorithms can be readily tailored to use guidance rewards. In Algorithm 2, we
summarize SAC with IRCR. The environmental reward in the experience replay tuple is replaced with
the return of the trajectory which produced that tuple (Line 13). When computing the soft Bellman
error for learning the soft Q-function, the guidance reward is calculated by normalizing this return
value (Lines 18-19). Mathematically, this is equivalent to the MC estimation of the guidance reward
using a single trajectory, rather than the expected credit from a trajectory distribution. This is not an
issue in practice if the soft Q-function, which is learned with these guidance rewards, is parameterized
by a deep neural network that tends to generalize well in the vicinity of the input data. Indeed, as our
experiments will show, Algorithm 2 achieves reliable performance in high-dimensional tasks. Other
actor-critic algorithms could be modified analogously to incorporate the guidance rewards.

Convergence. Some comments are in order concerning the convergence of our iterative approach.
We provide a qualitative analysis by drawing an analogy with the Cross Entropy (CE) method [14, 21].
For policy search, CE uses a multivariate Gaussian distribution to represent a population of policies.
In each iteration, individuals πk are drawn from this distribution, their fitness, Eτ∼πk [R(τ)], is
evaluated, and a fixed number of fittest individuals determine the new mean and variance of the
population. This fitness-based selection ensures steady policy improvement. In IRCR, the trajectories

5

Algorithm 2: Soft Actor-Critic with IRCR
1 Initialize φ, φ̄, θ . Policy and critic parameters
2 Rmax ← −∞; Rmin ←∞ . Maximum/Minimum return thus far
3 D ← ∅ . Empty replay buffer

4 for each episode do
5 Re ← 0 . Accumulates rewards for current episode
6 De ← ∅ . Stores transitions for current episode

7 for each step in {1, . . . , T} do
8 a ∼ πθ(a|s)
9 Take action a and observe r, s′ . Sample transition from the environment

10 De ← De ∪ {(s,a, s′)}; Re ← Re + r
11 end

12 for each (s, a, s′) ∈ De do
13 D ← D ∪ {(s, a, s′, Re)} . Append each transition with Re and add to replay buffer
14 end
15 Rmax ← max(Rmax, Re); Rmin ← min(Rmin, Re) . Update Rmax, Rmin

16 for each gradient step do
17 {s(k), a(k), s′(k), R(k)}k∈N+ ∼ D . Sample batch

18 r
(k)
g ← R(k)−Rmin

Rmax−Rmin
. Get guidance reward by normalizing return

19 φ← φ− λ∇φJQ(φ; rg) . Update Q-function using guidance rewards, (Eq. 1)
20 θ ← θ − λ∇θJπ(θ); α← α− λ∇αJ(α) . Update policy and temperature, (Eq. 2)
21 end
22 end

generated by a mixture of the current and past policies (π0:i) are used to compute the guidance
rewards (rg); πi+1 is then obtained by a policy optimization step with these rewards. Since rg is
positively correlated with the environmental returns R(τ), maximizing for a discounted sum of rg
tends to seek out a policy that attains higher R(τ) compared to π0:i, on average. Consequently, this
optimization step facilitates policy improvement in the same spirit as the CE method. The next section
provides empirical evidence that the policy behavior improves over iterations of IRCR. We consider
the theoretical study of convergence as an important future work.

4 Experiments

This section evaluates our approach on various single-agent and multi-agent RL tasks to quantify
the benefits of using the guidance rewards in place of the environmental rewards, when the latter are
sparse or delayed.

4.1 Single-agent environments and baselines

We benchmark high-dimensional, continuous-control locomotion tasks based on the MuJoCo physics
simulator, provided in OpenAI Gym [3]. We compare SAC (IRCR) outlined in Algorithm 2 with the
following baselines:

• SAC with environmental rewards. It uses the same hyperparameters as SAC (IRCR). Please see
Appendix A.2 for details.
• Generative Adversarial Self-imitation Learning (GASIL), which represents the method proposed

in Guo et al. [6]; Gangwani et al. [5]. A buffer stores the top-k trajectories according to the
return. A discriminator network, which is a binary classifier that distinguishes the buffer data
from data generated by the current policy, acts as a source of the guidance rewards.
• Reward Regression, which typifies the approaches presented in Arjona-Medina et al. [1]; Liu

et al. [13]. They formulate a regression task that predicts the return given the entire trajectory.
A network trained with this regression loss helps to decompose the trajectory return back to
the constituent state-action pairs, and provides the guidance rewards. We include the results
from Liu et al. [13] using the Transformer architecture (data obtained from authors).

6

